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We derive an exact theory of three-dimensional steady separation and reattachment
using nonlinear dynamical systems methods. Specifically, we obtain criteria for
separation points and separation lines on fixed no-slip boundaries in compressible
flows. These criteria imply that there are only four basic separation patterns with well-
defined separation surfaces. We also derive a first-order prediction for the separation
surface using wall-based quantities; we verify this prediction using flow models
obtained from local expansions of the Navier–Stokes equations.

1. Introduction
In this paper, we develop a rigorous theory of three-dimensional steady flow

separation on no-slip boundaries at rest. We view flow separation as the detachment
of fluid from the boundary, a process that results either in small-scale recirculation
or large-scale boundary-layer separation. The theory presented here covers general
compressible velocity fields that are continuously differentiable and mass-conserving
along the boundary.

1.1. Prior work on three-dimensional steady separation

Prandtl (1904) showed that a two-dimensional steady flow separates from a no-slip
boundary at isolated points where the wall shear (skin friction) vanishes and admits
a negative gradient. By contrast, numerical simulations and experiments show three-
dimensional flows to separate along lines, not isolated skin-friction zeros (see Tobak &
Peake 1982; Chapman 1986; Simpson 1996; and Délery 2001 for reviews).

The most prominent on-wall signature of three-dimensional separation is the
skin-friction distribution it generates. Legendre (1956) proposed analysing such
distributions using the geometric theory of two-dimensional smooth vector fields. In
such an analysis, one locates zeros (critical points) of the skin-friction field, identifies
their stability type, then constructs the phase portrait of skin-friction trajectories. This
critical-point-based local approach to three-dimensional separation was adopted and
refined by several authors (e.g. Perry & Fairlie 1974; Hunt et al. 1978; Dallmann
1983; and Yates & Chapman 1992; see Délery 2001 for further references).

Taking a more global view, Lighthill (1963) proposed that convergence of skin-
friction lines is a necessary criterion for separation. He went on to deduce that
separation lines always start from saddle-type skin-friction zeros and terminate
at stable spirals or nodes. Ever since, this heuristic separation criterion has been
helpful in interpreting a number of separated flow phenomena (see Délery 2001 for a
comprehensive list).
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Subsequently, topology and dynamical systems theory were applied in several studies
to analyse skin-friction patterns. Notably, Hunt et al. (1978) obtained topological
constraints on the number and type of singular points on three-dimensional bodies.
Peake & Tobak (1981) invoked structural stability and bifurcations to describe changes
in skin-friction patterns under varying flow conditions.

Meanwhile, Wang (1972, 1974) challenged Lighthill’s separation criterion with
examples where none of the converging skin-friction lines originate from saddles.
Wang termed the resulting separation open (the separation line starts or ends away
from skin-friction zeros), as opposed to Lighthill’s closed separation paradigm (the
separation line connects skin-friction zeros). Initially contentious, open separation has
gradually gained recognition after further numerical and experimental confirmation
(Tobak & Peake 1982; Yates & Chapman 1992).

As a new development, Wu, Gu & Wu (1987) moved beyond skin-friction patterns
and viewed separation as distinguished three-dimensional particle motion near the
boundary. They defined the separation surface as a two-dimensional set of fluid
trajectories backward-asymptotic to a saddle-type skin-friction zero. This appears to
be the first suggestion that separation surfaces are unstable manifolds in the sense of
nonlinear dynamics (see, e.g. Guckenheimer & Holmes 1983).

For the boundary layer equations, Van Dommelen & Cowley (1990) also advocated
the particle-based (Lagrangian) view of separation, with a primary focus on unsteady
flows. They proposed that the Jacobian of particle positions with respect to their
initial positions becomes singular at separation. Such singularities are absent in
physical flows, but material spike formation is indeed a well-documented signature of
separation.

More recently, Wu et al. (2000) derived conditions for the simultaneous convergence
and upwelling of fluid near general boundaries. These conditions tend to yield accurate
separation lines and separation slopes for steady flows with linear skin-friction fields
(cf. § 12 and Appendix E) and hence are effective close to skin-friction zeros. Wu et al.
(2000) demonstrate their result on a flow past a prolate spheroid (see also Wu, Ma &
Zhou 2005).

1.2. Main results

In the present paper, we develop an exact nonlinear theory of steady flow separation
and reattachment on boundaries at rest. We obtain criteria phrased in Eulerian (lab-
frame-based) quantities, but our techniques stem from the Lagrangian ideas of Shen
(1978), Van Dommelen & Shen (1980), Wu et al. (1987) and Van Dommelen &
Cowley (1990). Arguably, it is Lagrangian separation that is observed in most flow-
visualization experiments, including particle image velocimetry (PIV) and smoke or
dye experiments with weakly diffusive substances.

We link separation to the existence of unstable manifolds emanating from the no-
slip boundary. These manifolds are material curves or surfaces that collect and eject
fluid particles from the vicinity of the boundary. One-dimensional unstable manifolds
(separation profiles) emanate from zeros of the skin-friction field; such manifolds
can be found and approximated by classic results in nonlinear dynamics. By contrast,
two-dimensional unstable manifolds (separation surfaces) emanate from distinguished
skin-friction lines, the separation lines. Most of our effort goes into identifying such
lines.

We argue that the distinguishing feature of separation lines is their strong saddle-
type instability relative to an appropriately rescaled local flow near the boundary. We
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identify such instabilities by solving the time-dependent equation of variations along
scaled skin-friction lines.

As a result, we obtain asymptotic conditions for separation lines and explicit
formulae for separation angles. Invoking the Poincaré–Bendixson theory of planar
vector fields and using invariant manifold theory, we find that only four types of
locally unique separation lines are possible in physical fluid flows: (S1) saddle–spiral
connections; (S2) saddle–node connections; (S3) saddle–limit cycle connections and
(S4) limit cycles.

(S1) and (S2) separation have been known as closed separation; (S3) and (S4)
separation are undocumented, even though (S3)-type skin-friction patterns have
been observed in at least one instance (Hsieh & Wang 1996). Based on common
terminology, the latter two separation types should be characterized as open. They
differ from common examples of open separation in that they admit unique separation
lines and surfaces (cf. § 11).

For all four types of separation, we give conditions under which regular (i.e.
unique, bounded, smooth, and robust) separation surfaces emerge from the wall. We
also obtain first-order approximations for these surfaces from our separation angle
formula.

We test our theory on analytic flow models derived from the Taylor expansion of
the Navier–Stokes equations at a boundary point (Perry & Chong 1986). These flow
models are sophisticated enough to exhibit the four basic separation types, yet do not
pose computational or experimental difficulties that would obstruct the accuracy of
our predictions. A verification of our results in direct numerical simulations appears
in Surana, Jacobs & Haller (2005).

2. Set-up and assumptions
Consider a three-dimensional steady velocity field

v(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)). (2.1)

For simplicity, assume that the flow generated by v admits a flat boundary satisfying
z = 0; § 9 will describe the treatment of general boundaries.

On the z = 0 boundary, v satisfies the no-slip boundary condition

u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0. (2.2)

In our notation, we distinguish the velocity components parallel to the boundary by
letting

x = (x, y), u(x, z) = (u(x, y, z), v(x, y, z)), w(x, z) = w(x, y, z).

We assume that the fluid satisfies the steady continuity equation

∇ · (ρv) = 0, (2.3)

where ρ denotes the density of the fluid. Then (2.2) and (2.3) imply that the flow is
incompressible along the boundary:

∇ · v(x, 0) = 0. (2.4)

Using the no-slip boundary conditions (2.2) and the local incompressibility condition
(2.4), we rewrite the velocity field as

u(x, z) = zA(x, z), w(x, z) = z2C(x, z), (2.5)
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where

A(x, z) =

∫ 1

0

∂zu(x, qz) dq, C(x, z) =

∫ 1

0

∫ 1

0

∂2
z w(x, qrz)r dr dq. (2.6)

With this notation, (2.3) becomes

∇ρ · (zA, z2C) + ρz [∇x · A + 2C + z∂zC] = 0,

where ∇x = ex∂x + ey∂y , and ex and ey are unit vectors along the x- and y-axes. The
above must hold for all z; therefore, we must have

∇ρ · (A, zC) + ρ [∇x · A + 2C + z∂zC] = 0. (2.7)

By (2.5), fluid particle motions satisfy the differential equations

ẋ = zA(x, z), ż = z2C(x, z), (2.8)

for which the z =0 plane is a set of fixed points, a highly degenerate object. We
remove this degeneracy by introducing the rescaled time

s =

∫ t

t0

z(r) dr (2.9)

along each trajectory (x(t), z(t)) of (2.8) (see, e.g. Wu et al. 1987). With the scaling
(2.9) equation (2.8) becomes

x ′ = A(x, z), z′ = zC(x, z), (2.10)

with the prime referring to differentiation with respect to s. As (2.7) shows, the
rescaled flow (2.10) is compressible at the wall except at points where C(x, 0) = 0.
Note that s is a well-defined time-like variable for (2.10) even on the boundary,
although the transformation (2.9) between (2.8) and (2.10) breaks down at z = 0.

The trajectories of the scaled flow (2.10) are identical to those of (2.8) away from the
boundary. On the boundary, however, (2.10) generates fictitious trajectories tangent
to the skin-friction field

τ (x) = ρν A(x, 0) = ρν∂zu(x, 0), (2.11)

with ν denoting the kinematic viscosity of the fluid. In general, both ρ and ν are
functions of x on the boundary.

Another quantity of interest will be the wall-vorticity field

ω (x) = A⊥(x, 0) = ∂zu⊥(x, 0), (2.12)

where we used the notation (a, b)⊥ = (−b, a).

3. Separation and reattachment definitions
We say that the flow separates at the z =0 boundary if fluid particles near the

boundary converge to a streamline L (separation profile) or a streamsurface S
(separation surface), along which they are ejected from the boundary. In the language
of nonlinear dynamics, L is a one-dimensional unstable manifold of a boundary
point (separation point); S is a two-dimensional unstable manifold of a curve of
boundary points (separation line), as shown in figure 1.

Unstable manifolds are invariant: particles starting on them remain on them for
all times. Unstable manifolds are, therefore, material lines or surfaces that remain
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Figure 1. (a) Separation profile L emanating from a separation point p. (b) Separation
surface S emanating from a separation line γ .
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Figure 2. (a) Reattachment profile L emanating from a reattachment point p.
(b) Reattachment surface S emanating from a reattachment line γ .

undeformed by the flow in time. Because we consider steady flows, material lines and
material surfaces are streamlines and streamsurfaces, respectively.

To exclude unphysical cases, we shall only consider separation profiles and surfaces
that are:

(i) Unique: no other separation profile or surface emerges from the same set
of boundary points. Also, nearby boundary points admit no separation profiles or
surfaces.

(ii) Bounded: they intersect the boundary in a bounded set.
(iii) Smooth: they are continuously differentiable.
(iv) Robust: they smoothly deform but survive under small perturbations to v.
Properties (i)–(iii) express plausible physical features of separation; property (iv)

excludes degenerate separation patterns that are not reproducible experimentally or
numerically. Such patterns, as it turns out, include separation profiles and surfaces
tangent to the boundary.

We define reattachment as separation exhibited by the flow in backward time.
A reattachment point is, therefore, a boundary point with a one-dimensional stable
manifold (reattachment profile), and a reattachment line is a boundary curve with a
two-dimensional stable manifold (reattachment surface), as shown in figure 2. Again,
we require properties (i)–(iv) for reattachment profiles and surfaces. Just like unstable
manifolds, stable manifolds are also invariant material surfaces.

4. Separation points and profiles
4.1. Separation points

A separation profile L for the fluid flow (2.8) is also an invariant curve for the
scaled flow (2.10), because the trajectories of (2.8) and (2.10) coincide away from the
boundary. As a result, the intersection point p of L with the invariant plane {z = 0}
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must be invariant under the scaled flow. The point p is, therefore, a fixed point of
(2.10), i.e. a zero of the skin-friction field (2.11):

A( p, 0) = ∂zu( p, 0) = 0. (4.1)

The fixed point p admits an unstable manifold satisfying the properties (i)–(iv) if
and only if the linearized scaled flow,(

ξ ′

η′

)
=

(
∇x A( p, 0) ∂z A( p, 0)

0 C( p, 0)

)(
ξ

η

)
, (4.2)

has a single positive eigenvalue with the corresponding eigenvector transverse to the
z = 0 plane. This follows from the stable manifold theorem for fixed points of vector
fields (see Guckenheimer & Holmes 1983).

The eigenvalues λi of the linear system (4.2) satisfy

λ1 + λ2 = ∇x · A( p, 0), λ3 = C( p, 0). (4.3)

Because the eigenvector corresponding to λ3 is the only one off the boundary, and λ3

is the only one that is positive, we must have

det ∇x A( p, 0) > 0, ∇x · A( p, 0) < 0, (4.4)

at the separation point.
In conclusion, (2.11), (4.1) and (4.4) give the following sufficient and necessary

conditions for a separation point p to exist on the boundary:

τ ( p) = 0, det ∇x [τ/ (ρν)]x= p > 0, ∇x · [τ/ (ρν)]x= p < 0, ∂2
z w( p, 0) > 0. (4.5)

Reattachment points, by contrast, satisfy

τ ( p) = 0, det ∇x [τ/ (ρν)]x= p > 0, ∇x · [τ/ (ρν)]x= p > 0, ∂2
z w( p, 0) < 0. (4.6)

4.2. Separation profiles

Recall that a separation profile L is the off-wall streamline emanating from a
separation point p. Let L be locally represented by

x = p + zG(z), (4.7)

where G admits the Taylor-series expansion

G(z) = g0 + zg1 + 1
2
z2 g2 + 1

6
z3 g2 + · · · (4.8)

with

g0 = G(0), g1 = ∂zG(0), g2 = ∂2
z G(0), · · · , gn = ∂n

z G(0).

Because L is an invariant curve for the flow (2.8), differentiation of (4.7) in time
yields

ẋ = ż(G(z) + zG′(z)),

or, equivalently,

A( p + G(z), z) = zC( p + G(z), z)[G(z) + zG′(z)], (4.9)

as an implicit equation for the separation profile.
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Skin-friction trajectories

Skin-friction line

Figure 3. Skin-friction line consisting of three distinct skin-friction trajectories.

In (4.9), we substitute (4.8) for G and Taylor-expand at z = 0. Comparing the O(z)
terms on both sides gives an expression for the slope of the separation profile,

g0 = −
[
2∇x[τ/(ρν)] − ∂2

z w( p, 0)I
]−1

∂2
z u( p, 0), (4.10)

with I denoting the two-dimensional identity matrix.
Equating the O(z2) terms in (4.9) gives an expression for the separation curvature:

g1 = 1
2

[
∇x∂zu( p, 0) − ∂2

z w( p, 0) I
]−1

×
{

− 1
3
∂3

z u( p, 0) +
[

1
3
∂3

z w( p, 0)I − 3∇x∂
2
z u( p, 0)

]
g0

+ 2
[
−∇2

x∂
2
z u( p, 0)g0 +

(
∇x∂

2
z w( p, 0)g0

)
I
]

g0

}
. (4.11)

The above slope and curvature formulae are equally valid for reattachment profiles.
Higher-order approximations for separation and reattachment profiles can be obtained
by comparing the higher-order terms in (4.9).

5. Separation lines
5.1. Skin-friction lines

A separation surface S for the fluid flow (2.8) is an invariant surface for the scaled
flow (2.10). As a result, a separation line γ , the intersection of S with the invariant
plane {z = 0}, must be an invariant curve for (2.10). By (2.11), such an invariant curve
is a skin-friction line, i.e. a smooth curve tangent to the skin-friction field τ (x).

A skin-friction line, however, is typically not a single trajectory of (2.10); rather, it
is a connected union of such trajectories, with each trajectory x(s; x0) satisfying

x ′(s; x0) = A(x(s; x0), 0), x(0; x0) = x0, (5.1)

as shown in figure 3.
The fundamental question of three-dimensional separation is the following: What

distinguishes separation lines from other skin-friction lines? As we argue below, their
distinguishing feature is strong hyperbolicity.

5.2. Strong hyperbolicity

A skin-friction line γ is strongly hyperbolic with respect to the scaled flow (2.10) if: (i)
some infinitesimally close trajectories of (2.10) are attracted to γ in forward time and
repelled by γ in backward time; (ii) other infinitesimally close trajectories of (2.10) are
attracted to γ in backward time and repelled by γ in forward time; (iii) all these at-
traction and repulsion rates are non-degenerate, i.e. exponential in the rescaled time s.

If the forward-time attracted trajectories lie in the z =0 plane and the backward-
time attracted ones lie off the z = 0 plane, we call γ strongly S -hyperbolic with respect
to (2.10), with S referring to separation. If the forward-time attracted trajectories lie
off the z = 0 plane and the backward-time attracted ones lie in the z =0 plane, we
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Strong S-hyperbolicity Strong R-hyperbolicity

γ γ

Figure 4. S-type and R-type strong hyperbolicity of a skin-friction line with respect to the
scaled flow (2.10).

γ

Figure 5. Hyperbolic but not strongly hyperbolic skin-friction line in the scaled flow (2.10).

call γ is strongly R-hyperbolic with respect to (2.10), with R referring to reattachment
(see figure 4).

The qualifier strong in the above definitions signals a difference from the classical
definition of hyperbolicity in dynamical systems (see, e.g. Fenichel 1971). Specifically,
classical definitions only require some trajectories to be exponentially attracted to
γ in forward time (but not necessarily repelled by γ in backward time), and other
trajectories to be exponentially attracted to γ in backward time (but not necessarily
repelled by γ in forward time).

As a result, classical hyperbolicity does not necessarily describe experimentally or
numerically observable separation along γ : it only requires γ to collect tracers near
the wall for large s values. Tracers, therefore, may only accumulate near a part of
γ , as shown in figure 5. The same figure also highlights another shortcoming of
classical hyperbolicity in describing observable separation: tracers may not be ejected
everywhere along γ .

6. Criteria for separation and reattachment lines
Any bounded skin-friction line γ with strong S-hyperbolicity is a separation-line

candidate: tracers along the wall converge towards γ then leave the vicinity of the wall
due to the instability of γ . To find actual separation lines, we have to find computable
conditions under which: (a) a skin-friction line γ is strongly S-hyperbolic; (b) a
separation surface S satisfying properties (i)–(iv) of § 3 emerges from the wall along γ .

As we show in Appendix A, a bounded skin-friction line γ is a separation line if
and only if one of the following holds (see figure 6):

(S1) γ originates from a saddle p with ∂2
z w ( p, 0) > 0, and ends at a stable spiral

q with ∂2
z w (q, 0) > 0.

(S2) γ originates from a saddle p with ∂2
z w ( p, 0) > 0, and ends at a stable node q

with ∂2
z w (q, 0) > 0. Also, γ is tangent to the direction of weaker attraction at q.

(S3) γ originates from a saddle p with ∂2
z w( p, 0) > 0, and spirals onto a stable limit

cycle Γ with
∫

Γ
∂2

z w(x(s; x0), 0) ds > 0.

(S4) γ is a stable limit cycle with
∫

γ
∂2

z w(x(s; x0), 0) ds > 0.
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(S1)
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p

p

p
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Figure 6. The four basic separation patterns satisfying properties (i)–(iv) of § 3. For an
open–closed classification of these patterns, see § 11.

(a) (b)

Figure 7. (a) (S1) and (S2) separation lines emanating from the same saddle-type skin-
friction zero. (b) Two (S2) separation lines terminating at the same spiral-type skin-friction
zero.

All skin-friction zeros and limit cycles featured in (S1)–(S4) must be non-degenerate,
i.e. must attract or repel nearby skin-friction trajectories exponentially in the rescaled
time s. This will generically be the case away from corners formed by the z =0 plane
and another no-slip wall. For completeness, however, we compute all non-degeneracy
conditions in Appendix B, and discuss separation near corners in § 8.

Since the unstable manifold of a saddle-type skin-friction zero always has two
components, a combination of the (S1) and (S2) separation may also arise, as shown
in figure 7(a). Two identical separation types may also coexist and terminate at the
same skin-friction zero or limit cycle, as shown in figure 7(b).

The above separation criterion extends to curved boundaries and spheroid surfaces,
as discussed in § 9. For incompressible Navier–Stokes flows, the criterion can be
reformulated using wall pressure and skin friction only (see § 10). We discuss the
practical implementation of the criterion in § 12.1.

Similar results apply to reattachment lines after a reversal of time: a bounded
skin-friction line γ on the z =0 boundary is a reattachment line if and only if one of
the following holds:

(R1) γ originates from an unstable spiral p where ∂2
z w ( p, 0) < 0, and ends at a

saddle q where ∂2
z w (q, 0) < 0.

(R2) γ originates from an unstable node p with ∂2
z w ( p, 0) < 0, and ends at a saddle

q with ∂2
z w (q, 0) < 0. Also, γ is tangent to the direction of weaker repulsion at p.
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τ(x0)
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θ(x0)

ω(x0)

Figure 8. Definition of the separation angle.

(R3) γ spirals off from an unstable limit cycle Γ with
∫

Γ
∂2

z w(x(s; x0), 0) ds < 0,

and ends at a saddle q with ∂2
z w(q, 0) < 0.

(R4) γ is an unstable limit cycle with
∫

γ
∂2

z w(x(s; x0), 0) ds < 0.

We list the corresponding non-degeneracy conditions in Appendix B. Reattachment
near transverse no-slip walls, on curved boundaries, and on spheroid surfaces
can again be analysed based on §§ 8 and 9 below. As in the case of separation,
the conditions (R1)–(R4) can be verified from wall-pressure and skin-friction
measurements in incompressible Navier–Stokes flows (see § 10).

7. Slope of separation and reattachment surfaces
We define the separation angle θ(x0) at a point x0 of a separation line γ as the angle

between the wall normal and the tangent of the curve that lies in the intersection of
S with a plane normal to γ (see figure 8).

As shown in Appendix A, the separation slope satisfies

tan θ(x0) =

∫ 0

−∞
exp

(∫ s

0

[C(x(r; x0), 0) − S⊥(r)] dr

)
∂2

z u · ω
2|ω|

∣∣∣∣
x=x(s,x0),z=0

ds, (7.1)

where

S⊥(s) =
ω · (∇x [τ/(ρν)] ω)

|ω|2

∣∣∣∣∣
x=x(s,x0)

(7.2)

measures the skin-friction stretching rate normal to the skin-friction trajectory x(s, x0)
starting from x0 at time s = 0.

Reattachment slopes obey a similar formula with the limit taken in forward time:

tan θ(x0) = −
∫ +∞

0

exp

(∫ s

0

[C(x(r; x0), 0) − S⊥(r)] dr

)
∂2

z u · ω
2|ω|

∣∣∣∣
x=x(s,x0),z=0

ds. (7.3)

8. Separation at corners
Consider a backward-facing step shown in figure 9. Here skin-friction trajectories

in the z = 0 plane approach lines of skin-friction zeros at corner of the x =0 and
y = 0 walls.

Let γ be the skin-friction line intersecting the x = 0 vertical wall at the saddle point
p. Then γ , a reattachment line candidate, is not strongly R-hyperbolic, because it
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z = 0

x = 0y = 0
p

Figure 9. Skin-friction trajectories behind a backward-facing step.

does not repel other skin-friction trajectories at an exponential rate in the rescaled
time s. Rather, γ repels trajectories at an algebraic rate due to the line of degenerate
skin-friction zeros through p.

Observe, however, that the analogue of the no-slip boundary conditions (2.2) now
also holds at the x = 0 wall, allowing us to recast the particle ODE (2.8) in the form

ẋ = x2zĀ(x, z), ẏ = xzB̄(x, z), ż = xz2C̄(x, z), (8.1)

with

Ā(x, z) =

∫ 1

0

∫ 1

0

∫ 1

0

∂3
xxzu(rqx, y, sz)q dq ds dr,

B̄(x, z) =

∫ 1

0

∫ 1

0

∂2
xzv(rx, y, sz) ds dr,

C̄(x, z) =

∫ 1

0

∫ 1

0

∫ 1

0

∂3
xzzw(rx, y, sqz)q dq ds dr.

Now, instead of (2.9), we introduce the new time

s =

∫ t

t0

x(r)z(r) dr (8.2)

along each trajectory of (8.1) to obtain the rescaled equations of particle motion

x ′ = Ā(x, z), z′ = zC̄(x, z), (8.3)

with

Ā = (xĀ, B̄),

and with the prime referring to differentiation with respect to s as defined in (8.2). In
the rescaled system (8.3), γ is strongly hyperbolic if no higher-order degeneracies are
present at the corner.

By analogy between (2.10) and (8.3), all our separation results carry over to
the present case if we replace (A, C) with

(
Ā, C̄

)
. Specifically, the non-degeneracy

conditions of Appendix B and the slope formula (7.1) should be evaluated using Ā
and C̄. Curved vertical walls can be treated by combining the present approach with
that of § 9 below.
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9. Separation on curved boundaries and spheroids
9.1. Curved boundaries

Keeping the notation x = (x, y), we now assume that the flow boundary satisfies
z = f (x) for some smooth function f (x). The no-slip boundary condition for the
velocity field v = (u, v, w) then becomes

u (x, f (x)) = v (x, f (x)) = w (x, f (x)) = 0.

As earlier, we assume that the steady continuity equation (2.3) holds, which again
implies local incompressibility along the boundary:

∇ · v (x, f (x)) = 0. (9.1)

We flatten out the boundary by replacing z with the new coordinate

z̃ = z − f (x),

which transforms the particle motion equations (2.8) to the form

d

dt
x = ũ(x, z̃),

d

dt
z̃ = w̃(x, z̃), (9.2)

with

ũ (x, z̃) = u(x, z̃ + f (x)), w̃ (x, z̃) = w(x, z̃ + f (x)) − ∇xf (x) · u(x, z̃ + f (x)).

Because

det

[
∂ (x,z̃)

∂ (x, z)

]
= 1,

the transformation (x, z) �→ (x,z̃) preserves volume. As a result, the flow remains
locally incompressible in the (x, z̃) coordinates along the z̃ = 0 boundary. The
transformed velocity field ṽ = (ũ, w̃), therefore, can again be written in the form

ũ(x, z̃) = z̃ Ã(x, z̃), w̃(x, z̃) = z̃2C̃(x, z̃), (9.3)

with the functions

Ã(x, z̃) =

∫ 1

0

∂z̃ũ(x, sz̃) ds, C̃(x, z̃) =

∫ 1

0

∫ 1

0

∂2
z̃ w̃(x, sqz̃)q dq ds.

By analogy between (2.5) and (9.3), our previous results for separation on flat
boundaries carry over to the present case. Specifically, if instead of the true skin-
friction and wall-vorticity fields, we use their x-projections,

τ (x) = ρν∂zu(x, f (x)),

ω(x) = A⊥(x, f (x)),

}
(9.4)

then the separation and reattachment criteria of § 6 continue to hold.
The separation slope and curvature formulae also remain valid in the (x̃,z)

coordinates, as long as we evaluate (4.10), (4.11) and (7.1) at z = f (x) instead of
z = 0. In Appendix C, we derive an expression for the separation slope in the original
(x,z) coordinates.

9.2. Spheroids

Spheroids are surfaces obtained from smooth deformations of a two-dimensional
sphere (see figure 10). Such surfaces can always be written locally as a smooth graph
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γ

�

Figure 10. Separation on a spheroid surface.

z = f (x), and hence separation and reattachment on them can locally be studied using
the approach of § 9.1 above.

Our mathematical argument in Appendix A, however, also utilizes the global
geometry of the boundary. Specifically, a crucial ingredient, the classic Poincaré–
Bendixson theory (see, e.g. Guckenheimer & Holmes 1983), applies to bounded planar
skin-friction fields. By this theory, all bounded skin-friction lines must emanate from,
and converge to, one of the following types of sets: a skin-friction zero, a skin-friction
limit cycle, or a set of skin-friction zeros connected by skin-friction trajectories.

The classic Poincaré–Bendixson theory, however, extends to any surface that is
diffeomorphic to a sphere, i.e. any surface that is the image of a sphere under
a continuously differentiable invertible mapping with a differentiable inverse (see
Hartman 1982). As a result, the separation theory developed here carries over to
common aerodynamic objects, such as ordinary airfoils, fuselages, projectiles, and
prolate spheroids.

Boundaries that are formally not covered by our theory are two-dimensional
manifolds on which the Poincaré–Bendixson theory fails: toroidal surfaces and
surfaces with handles. Our results, however, do apply even to such boundaries if
the separation or reattachment line γ is fully contained in a boundary domain
satisfying z = f (x) (cf. (9.1)).

10. Separation in incompressible Navier–Stokes flows
For incompressible flows, the steady continuity equation (2.3) and ∇ · v = 0 yield

v · ∇ρ = z [∇ρ · (A, zC)] = 0.

This equation must hold for all z, thus ∇ρ · (A, zC) must vanish for all z �= 0. Then,
by continuity, ∇ρ · (A, zC) must also vanish at z = 0, implying

∇ρ · (A, zC) = 0 (10.1)

for all z.
Setting z = 0 in (2.7) and using (10.1) then gives

∇x · A (x, 0) + 2C (x, 0) = 0. (10.2)

We recall the notation introduced in (2.6) and (7.2), and let

S‖(s) =
τ · (∇x [τ/ (ρν)] τ )

|τ |2

∣∣∣∣∣
x=x(s,x0)

(10.3)

denote the skin-friction stretching rate along x(s, x0). We can then rewrite (10.2) as

∂2
z w(x(s; x0), 0) = 2C(x(s; x0), 0) = −∇x · [τ (ρν)] = −[S‖(s) + S⊥(s)]. (10.4)
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By (10.4), in the separation criteria of §§ 4 and 6, the wall-normal derivative

∂2
z w = −∇x · [τ/ (ρν)] (10.5)

can be computed from on-wall derivatives of the skin-friction field. In addition, by
(10.4), the separation slope formula (7.1) takes the form

tan θ(x0) =

∫ 0

−∞
exp

(
−1

2

∫ s

0

[3S⊥(r) + S||(r)] dr

)
∂2

z u · ω
2|ω|

∣∣∣∣
x=x(s,x0),z=0

ds. (10.6)

For a steady incompressible Navier–Stokes flow with pressure field p(x, 0), the
continuity equation (2.3) and the Navier–Stokes equations give

∇xρ(x, 0) = 0, ∂2
z u(x, 0) =

1

νρ
∇xp(x, 0). (10.7)

Then, assuming that ρν = const. along the boundary, we obtain from (10.7), (4.10)
and (10.6) the separation slope formulae

g0 = −[2∇xτ ( p) + ∇x · τ ( p)I]−1∇xp(x, 0), (10.8a)

tan θ(x0) =
1

2νρ

∫ 0

−∞
exp

(
−1

2

∫ s

0

[3S⊥(r) + S||(r)] dr

)
∇xp(x, 0) · ω

|ω|

∣∣∣∣
x=x(s,x0)

ds.

(10.8b)

Thus, for incompressible Navier–Stokes flows, the separation slope can also be com-
puted from wall pressure and skin friction. Analogous results hold for reattachment.

Using the slope formulae in (10.8), we can show that tangential separation – although
theoretically possible – is non-robust and hence is unobservable in incompressible
Navier–Stokes flows (cf. Appendix A, § A.7).

11. Open–closed classification of separation patterns
A consequence of the previous sections is the following general result: three-

dimensional steady separation or reattachment is either closed (γ connects zeros of
τ ), open (γ is a limit cycle of τ ), or open–closed (γ connects a saddle-type zero of
τ to a limit cycle). There is no other steady separation or reattachment pattern that
satisfies all the basic requirements (i)–(iv) we put forward in § 3.

11.1. Prior work on open separation

As noted in the Introduction, open separation (i.e. separation without skin-friction
zeros at either end of the separation line) was first observed by Wang (1972). The
best known example of open separation (also known as crossflow separation) is that
on a round-nosed body of revolution (Wang 1972, 1974, 1983; Tobak & Peake 1982).
We sketch the corresponding skin-friction pattern in figure 11.

In an incompressible flow, converging skin-friction lines, such as those in figure
11, indeed lead to the ejection of particles from the vicinity of the boundary. Based
on the skin-friction topology, one is tempted to designate the attracting portion of a
skin-friction line, such as the dashed segment in figure 11, as a line of separation.

Note, however, that the above designation is arbitrary: the dashed line segment is
no more distinguished than any other nearby segment with S⊥ < 0: all such segments
attract skin-friction lines, connect the same skin-friction zeros, and repel off-wall fluid
trajectories owing to ∂2

z w (x, 0) > 0, which holds by (10.5).
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Figure 11. Sketch of skin-friction lines on a round-nosed body of revolution at higher
angles of attack.

(a) (b)

Figure 12. (a) Common illustration of separation on a delta wing (from Délery 2001).
(b) Simplest complete separation pattern on the full delta wing.

The skin-friction pattern shown in figure 11, therefore, does not admit a unique
separation line or separation surface, thereby violating our basic requirement (i) for
separation in § 3. Even if one heuristically designates a segment γ̃ of a skin-friction
line as a separation line, there is no unique separation surface emanating from γ̃ .
Indeed, repeating the derivation of the separation slope formula in Appendix A,
§ A,4, we find that any material surface emanating from γ̃ remains transverse to the
boundary while attracting and ejecting nearby fluid particles.

The lack of a unique separation line and surface in crossflow separation has also
been noted by Han & Patel (1979), Yates & Chapman (1992) and Wetzel, Simpson &
Chesnakas (1998). As a well-defined separation structure in such problems, one may
instead choose the one-dimensional separation profile emanating from the attracting
skin-friction zero (see figure 19(c) for an example).

Another frequently cited example of open separation is that over a delta wing, as
sketched in figure 12(a). In this example, as often remarked, the straight skin-friction
lines emanating from the tip of the wing do not terminate in skin-friction zeros.

Note, however, that the skin-friction pattern in figure 12(a) is incomplete. The
full wing is a two-dimensional spheroid, thus by the Poincaré–Bendixson theory, all
skin-friction lines must emanate from, and converge to, one of the three types of
sets described in § 9.2: a skin-friction zero, a skin-friction limit cycle, or a set of
skin-friction zeros connected by skin-friction trajectories.

A full skin-friction pattern consistent with the Poincaré–Bendixson theory is shown
in 12(b). This pattern exhibits closed separation: all separation lines connect zeros of
the τ -field. The skin-friction lines near the tip may be intricate, but must terminate
in one of the three types of sets mentioned above.
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Other proposed examples of open separation involve flows defined on infinite
domains (Kenwright, Henze & Levit 1999). The Poincaré–Bendixson theory is invalid
on unbounded domains: an unbounded separation line may indeed not converge
to zeros or limit cycles of the τ -field. In this paper, however, we have excluded
unbounded separation lines as unphysical (see (iii) of § 3).

In summary, the separation theory described here allows for open separation, but
not of the type suggested in earlier studies. Some of those studies proposed examples
with incomplete separation patterns; others proposed examples with unbounded or
non-unique separation surfaces.

11.2. Prior work on open-closed separation

The (S3) open–closed separation described in this paper has apparently been
overlooked as a possibility in earlier studies. Hsieh & Wang (1996), however, do
observe connections between saddle-type zeros and limit cycles of the skin-friction
field on a cylinder with a hemispherical cap.

12. Examples
Here we analyse three-dimensional separation in analytic flow models obtained

as truncated expansions of the Navier–Stokes equations near a boundary point (see
Perry & Chong 1986). All our models are incompressible and dynamically consistent
up to quartic order in the distance from the point of expansion. We give a brief
summary of the derivation of these models in Appendix D.

Varying free parameters in our models, we provide examples of the four basic
separation patterns (S1)–(S4). We then generate streamlines numerically to confirm
the predicted location and slope of the separation surface.

12.1. Steps in the analysis

We analyse our flow models through the following steps:
(i) For a given skin-friction field, find all saddles, nodes, foci, and limit cycles.
(ii) For each non-degenerate skin-friction saddle p, find its stable and unstable

manifolds in the z = 0 plane. Wu( p) is obtained numerically by advecting a small
line segment under the scaled flow (2.10); the line segment is initially tangent to
the unstable eigenvector of p. W s( p) is obtained by backward-advecting a small line
segment under the scaled flow (2.10); the line segment is initially tangent to the stable
eigenvector of p.

(iii) Identify separation and reattachment points using (4.5) and (4.6).
(iv) Identify separation and reattachment lines from the list (S1)–(S4) and (R1)–

(R4). Verify non-degeneracy of separation patterns using Appendix B.
(v) Compute the slope of separation and reattachment profiles using (4.10).
(vi) Compute first-order approximations for reattachment and separation surfaces

from the slope formula (7.1).
More generally, the above procedure applies to any numerical or experimental

flow data on a boundary domain away from vertical walls. Near vertical walls, the
procedure changes according to § 8 (see Surana, Jacobs & Haller 2005 for examples).

12.2. Comparison with vorticity-based separation theory

For all examples below, we also evaluate the vorticity-based separation theory of Wu
et al. (2000), the only general criterion available for three-dimensional separation.
Appendix E contains a summary of this criterion and the corresponding separation-
slope formula.
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Figure 13. (a) Skin-friction trajectories for Example I (α =1, β = 2 and δ = 0). (b) Predicted
second-order separation profile, and nearby streamlines.

As we shall see, the vorticity-based theory yields inaccurate separation surfaces
that intersect – rather than attract and eject – nearby streamlines at the wall. This is
because the theory postulates separation lines to be local maximizers (ridges) of the
scalar field

ϕ(x) = S⊥(x)[S⊥(x) + S||(x)]/ |ω(x)|2 ,

even though such ridges only coincide with skin-friction lines if the τ -field is linear
(see Appendix E). Near skin-friction zeros, however, the τ -field is close to linear, and
hence the vorticity-based prediction for separation lines becomes reasonably accurate.

In the examples admitting separation lines, we shall plot the contours of ϕ(x) over
domains where the two additional separation conditions of Wu et al. (2000), S⊥ < 0
and S⊥ + S|| < 0, are also satisfied. We shall then locate ridges of ϕ(x) for comparison
with the exact theory.

12.3. Example I: Tornado-type separation

A special case of the model velocity field (D 4) is given by

u = −xz + yz + (α + δx)z2,

v = −xz − yz + (β + δy)z2,

w = z2 − (2δ/3)z3,

⎫⎬
⎭ (12.1)

with the skin-friction field:

τ =

(
−x + y

−x − y

)
.

This skin-friction field is linear and hence does not admit any limit cycles. The only
skin-friction zero is p = (0, 0), for which

det ∇xτ ( p) = 2 > 0, ∇x · τ ( p) = −2 < 0, ∂2
z w( p, 0) = 2 > 0.

Thus, by (4.5), p is a separation point with a one-dimensional separation profile that
collects and ejects nearby fluid particles. A linear stability analysis reveals that p is
an unstable spiral of the skin-friction field (see figure 13a).
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Evaluating the slope and curvature formulae (4.10) and (4.11), we find that the
separation profile satisfies(

x

y

)
= z

(
2/5 + zδ/6 1/5 + zδ/6

−1/5 − zδ/6 2/5 + zδ/6

)(
α

β

)
+ O(z3). (12.2)

Figure 13(b) confirms that (12.2) is indeed the correct quadratic approximation for
the separation profile.

12.4. Example II: Nonlinear saddle-type separation

In Appendix D, we obtain the velocity field

u = axz − 3dxz2,

v = −byz + cx2z − cz3/3,

w = (b − a) z2/2 + dz3,

⎫⎬
⎭ (12.3)

by applying the Perry–Chong procedure to the skin-friction field

τ =

(
ax

−by + cx2

)
, a, b > 0.

Because det ∇xτ ( p) = −ab < 0, the point p =(0, 0) is a non-degenerate saddle. We
find the skin-friction trajectories by direct integration:

x(s; x0) =

⎛
⎝ x0 eas

y0e
−bs +

x2
0

2a + b
(e2as − e−bs)

⎞
⎠.

Thus, the stable manifold Ws( p) of the skin-friction saddle p is the y-axis; the
unstable manifold Wu( p) satisfies

Wu( p) =

{
(x, y) : y =

x2

2a + b

}
,

as shown in figure 14(a).
Because only Ws( p) and Wu( p) connect to a saddle point and there are no limit

cycles in the τ -field, only Ws( p) and Wu( p) are separation- and reattachment-line
candidates. Noting that

∂2
z w( p, 0) = b − a, (12.4)

we find that for b >a, the unstable manifold Wu( p) is a separation line of type (S1),
(S2), (S3) or (S4) on any bounded domain. The actual type of separation depends on
the forward-asymptotics of Wu( p), a feature uncaptured by our truncated flow model.

In figure 14(b), we show the difference between γ = Wu( p), the separation line
predicted by our theory, and the separation line obtained from the vorticity-based
criterion of Wu et al. (2000). The difference is small around p, but increases as we
move away from p.

The incompressible formula (10.6) gives the separation slope along γ :

tan θ(x0) =
6x2

0

(2a + b)
√

4x2
0 + (2a + b)2

, x0 =

(
x0,

x2
0

2a + b

)
. (12.5)

We also compute the vorticity-based slope prediction (E 7) numerically along the
dashed line of figure 14(b); the results are compared in figure 15.
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Figure 14. Nonlinear saddle-type separation for a = 1, b = 1, c =1 and d = 0.5. (a) Skin-
friction trajectories. (b) Exact separation line (solid) and its vorticity-based prediction (dashed),
the ridge of the scalar field ϕ. The contours of ϕ are shown over the region where (E 4) holds.
(c) Linear prediction for the separation surface by our exact theory; also shown are nearby
streamlines, started in two different z-planes, in different colours on opposite sides of the
surface. (d) As (c) but for the vorticity-based separation theory.

The numerically generated streamlines in figure 14(c) confirm that γ = Wu( p) is
the correct separation line, and (12.5) is the correct separation slope. Indeed, black
and green streamlines started on different sides of the predicted separation surface
asymptote to the surface. By contrast, figure 14(d) shows the first-order separation
surface predicted by the theory of Wu et al. (2000). In this case, streamlines released
on different sides of the predicted surface intersect the surface even near the wall,
hence the vorticity-based prediction is inaccurate.

12.5. Example III: Separation-bubble flow

In Appendix D, we derive the separation-bubble flow

u = z[(x/a)2 + (y/b)2 − 1] + z2[α + δx + (c/6 − 2/(3a2) − 1/(3b2))z],

v = −yz(cx + d) + z2(β + δy),

w = dz2/2 + (ca2 − 2)xz2/(2a2) − 2δz3/3,

⎫⎪⎬
⎪⎭ (12.6)
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Figure 15. Separation slope as a function of x along the separation line in Example I:
exact theory (solid line), vorticity-based theory (dashed line).

with the skin-friction field

τ =

(
x2/a2 + y2/b2 − 1

−ycx − yd

)
.

For for d <ac, this flow admits the four skin-friction zeros

p1 =

(−a

0

)
, p2 =

(
a

0

)
,

p3 =

(
−d/c

−b
√

1 − [d/ (ac)]2

)
, p4 =

(
−d/c

b
√

1 − [d/ (ac)]2

)
.

We find that

det ∇xτ ( p1) = 2a(d − ac) < 0, det ∇xτ ( p2) = −2a(d + ac) < 0;

both p1 and p2 are, therefore, saddles and hence cannot be separation or reattachment
points by (4.5)–(4.6).

Because

det ∇xτ ( p3,4) =
2

c

[
1 −

(
d

ac

)2 ]
> 0,

∇x · τ ( p3,4) = − 2d

a2c
< 0, ∂2

z w( p3,4, 0) =
2d

a2c
> 0,

⎫⎪⎪⎬
⎪⎪⎭ (12.7)

p3 and p4 must be separation points by (4.5). A linear stability analysis reveals that
p3 and p4 are stable spirals of the τ field (see figure 16a).

As figure 16(a) reveals, this flow has no nodes or limit cycles, thus it can only
exhibit (S1) separation by the last inequality in (12.7); by the same inequality, no
reattachment lines exist.
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Figure 16. Separation bubble model with a = c = 1, b = 10, d = 0.5, α = 1, β = 0, δ = −1.
(a) Skin-friction trajectories. (b) Exact separation line (solid) and its vorticity-based prediction
(dashed), the ridge of the scalar field ϕ. The contours of ϕ are shown over the region where
(E 4) holds. (c) Linear prediction for the separation surface by our exact theory; also shown
are nearby streamlines.

Separation lines in this example must therefore contain skin-friction trajectories that
are backward-asymptotic to p1 or p2 and forward-asymptotic to p3 or p4. The upper
and lower components of the unstable manifold Wu ( p1) satisfy this requirement,
yielding a single separation line γ connecting the upper and lower spirals through the
saddle p1.

Figure 16(b) compares γ with the prediction of the vorticity-based separation
theory. While the vorticity-based prediction is again correct at skin-friction zeros, it
suggests a separation line radically different from γ . The numerical simulations in
figure 16(c) confirm that γ is the correct separation line, and (10.6) is the correct
separation slope, which we obtained along γ numerically.
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12.6. Example IV: Open separation along a limit cycle

In Appendix D, we derive the model velocity field

u = µxz + yz − x3z + 8z3x/3 − xy2z,

v = −xz + µyz − x2yz − y3z + 8yz3/3,

w = −µz2 + 2z2x2 + 2z2y2 − 4z4/3,

⎫⎬
⎭ (12.8)

with the skin friction field

τ =

(
µx + y − x3 − xy2

−x + µy − yx2 − y3

)
.

In this example, p = (0, 0) is the only skin-friction zero; at this point, we have

det ∇xτ ( p) = µ2 + 1 > 0, ∇x · τ ( p) = 2µ, ∂2
z w( p, 0) = −∇x · τ ( p) = −2µ,

thus, by (4.5)–(4.6), p is a separation point for µ < 0 and a reattachment point for
µ > 0.

As µ is varied from negative to positive values, an attracting limit cycle Γ emerges
at x2 + y2 = µ (figure 17a). This can be verified explicitly by transforming the velocity
field to polar coordinates.

The limit cycle Γ satisfies∫
Γ

ω · ([∇xτ ] ω)

|ω|2
ds = −2µT < 0,

∫
Γ

∂2
z w ds = 4µT > 0, (12.9)

where T is the period of Γ . By (12.9), Γ is non-degenerate (cf. Appendix B) and
coincides with a separation line of (S3)-type. Figure 17(b) shows the dashed separation
line predicted by the vorticity-based separation theory. In this example, the dashed
line is qualitatively correct, but misses the exact location of the limit cycle and is
transverse to skin-friction lines.

In order to compute the separation slope, we observe that ∂2
z u ≡ 0 in the present

example. Thus, by formula (10.6), we have

tan θ (x0) = 0,

thus the separation surface is orthogonal to the z = 0 plane. By (10.7) and (E 6),
the vorticity-based separation theory of Wu et al. (2000) also predicts orthogonal
separation, but along the incorrect dashed curve of figure 17(b).

Figure 17(c) shows numerically computed streamlines and a higher-order
approximation for the separation surface (cf. formula (D 7)), confirming the separation
line and slope predicted by our theory.

12.7. Example V: Model with bifurcating separation patterns

In Appendix D, § D.6, we derive the model flow

u = yz − z3/6,

v = xz + µyz − x2z + xyz + z3/3,

w = − (µ + x) z2/2,

⎫⎬
⎭ (12.10)

with the associated skin-friction field

τ =

(
y

x + µy − x2 + xy

)
.
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Figure 17. Open separation model with µ= 1. (a) Skin-friction trajectories. (b) Exact
separation line (solid) and its vorticity-based prediction (dashed), the ridge of the scalar
field ϕ. The contours of ϕ are shown over the region where (E 4) holds. (c) Higher-order
prediction for the separation surface by our exact theory; also shown are nearby streamlines.

The fixed points of the τ -field are p1 = (0, 0) and p2 = (1, 0 ). Since

det ∇xτ ( p1) = −1, ∂2
z w( p1, 0) = −µ, (12.11)

the point p1 is a saddle-type skin-friction zero and hence is not a separation point.
The point p2 satisfies

det ∇xτ ( p2) = 1 > 0, ∇x · τ ( p2) = µ + 1, ∂2
z w( p2, 0) = − (µ + 1) , (12.12)

thus, by (4.5), p2 is a separation point for µ < −1.
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Figure 18. (S1) separation in the bifurcating flow model for µ= −2. (a) Skin-friction
trajectories. (b) Exact separation line (solid) and its vorticity-based prediction (dashed), the
ridge of the scalar field ϕ. The contours of ϕ are shown over the region where (E 4) holds. (c)
Linear prediction for the separation surface near the wall; also shown are nearby streamlines.

A linear stability analysis shows that p2 is a stable spiral for −3 < µ < −1, and a
stable node for µ < −3. We show the corresponding skin-friction lines in figures 18(a)
and 19(a). By (12.11) and (12.12), the bounded branch of Wu( p1) satisfies the non-
degeneracy conditions for (S1) and (S2) separation for µ < −1. By figure 19(a), Wu( p1)
is also tangent to the direction of weaker decay at the node, as required for (S2)
separation.

For µ > −1, p2 becomes an unstable spiral encircled by a stable limit cycle Γ , which
is connected to the saddle p1 by the bounded branch of the unstable manifold Wu( p1)
(see figure 20a). The non-degeneracy of the limit cycle can be verified numerically:
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Figure 19. (S2) separation in the bifurcating flow model for µ= −4. (a) Skin-friction
trajectories. (b) Exact separation line (solid) and its vorticity-based prediction (dashed),
the ridge of the scalar field ϕ. The contours of ϕ are shown over the region where (E 4)
holds. (c) Linear prediction for the separation surface near the wall; also shown are nearby
streamlines.

for instance, for µ = −0.95, we obtain∫
Γ

ω · ([∇xτ ] ω)

|ω|2
ds = −0.42 < 0,

∫
Γ

∂2
z w ds = 0.42 > 0,

thus conditions (B 8) and (B 9) are satisfied.
Figures 18(b), 19(b) and 20(b) show the dashed separation line predicted by the

vorticity-based theory of Wu et al. (2000). In the first two cases, the vorticity-
based prediction remains close to the exact separation line owing to the small
distance between p1 and p2. In the third case, the vorticity-based prediction fails both
quantitatively and qualitatively: it still suggests a separation line between p1 and p2.
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Figure 20. (S3) separation in the bifurcating flow model for µ= −0.95. (a) Skin-friction
trajectories. (b) Exact separation line (solid) and its vorticity-based prediction (dashed), the
ridge of the scalar field ϕ. The contours of ϕ are shown over the region where (E 4) holds.
(c) Linear prediction for the separation surface by our exact theory; also shown are nearby
streamlines.

In figure 19(b), the separation line predicted by our theory terminates at the skin-
friction node p2. By contrast, the vorticity-based prediction continues through the
point p2. Beyond the fact that the latter prediction is not a skin-friction line, there is
no unique skin-friction line that could be designated as a separation line beyond p2

(see our related discussion on open separation in § 11.1). Instead, separation beyond
p2 is best characterized by the one-dimensional separation profile emanating from p2.

Figures 18(c), 19(c) and 20(c) show numerical confirmations of the predictions of
our theory, with the separation slope calculated numerically from formula (10.6).
As suggested above, figure 19(f ) shows all streamlines near p2 to converge to the
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one-dimensional separation profile (red curve) based at p2; we computed this profile
up to second order from formulae (4.10) and (4.11).

13. Conclusions
We have developed a mathematically exact theory of three-dimensional steady

separation using nonlinear dynamical systems methods. Our theory covers smooth
compressible flows that are locally mass-preserving along a fixed no-slip boundary.
We have also given an extension to separation near corners formed by transverse
no-slip boundaries.

Our main result is that physically observable separation surfaces are unstable
manifolds for saddle-type zeros or limit cycles of the skin-friction field. We have
derived conditions under which such surfaces are guaranteed to emerge from the wall;
we have also obtained explicit formulae for the leading-order shape of separation
surfaces. For Navier–Stokes flows, our criteria and formulae can all be evaluated
using on-wall measurements of skin-friction and pressure.

A consequence of our results is that only four robust separation patterns admit
uniquely defined separation lines and surfaces. Two of these patterns have been
previously described as closed; the other two – classified as open–closed and open in
this paper – have not been described in previous studies.

We have illustrated our criteria and slope formulae on local flow models derived
from the Navier–Stokes equations through a Perry–Chong-type expansion. Direct
numerical simulations of a cavity and a backward-facing step flow also confirm our
results (Surana et al. 2005).

As we noted in the Introduction, the detachment of fluid from the boundary
may just mark a local separation bubble, but may also signal full boundary-layer
separation. Three-dimensional experiments and simulations leave little doubt that
boundary-layer separation takes place along two-dimensional unstable manifolds.
The only question is whether these manifolds emanate from the wall or from off-wall
saddle-type trajectories.

While a rigorous answer to the above question seems beyond reach, we would
strongly argue for wall-based unstable manifolds. Such manifolds have footprints
in the skin-friction field that are routinely observed in numerical and laboratory
experiments on three-dimensional boundary-layer separation (see, e.g. Tobak & Peake
1982; Simpson 1996; Délery 2001). These footprints may, in principle, be far from
where the boundary layer actually breaks away, but the two-dimensional asymptotic
calculations of Sychev (1972) suggest otherwise (see also Smith 1978 for related initial
work in three dimensions). Based on all this, we propose that the criteria developed
here are necessary conditions for steady boundary-layer separation.

The work presented here is the first in a three-part study of three-dimensional
separation. In a follow-up paper, we show how the Lagrangian approach developed
here extends to unsteady flows with a well-defined steady mean component (Surana
et al. 2006). In such flows, separation surfaces become time-dependent, but the
underlying separation lines remain fixed, just as separation points do in unsteady
two-dimensional oscillatory flows (Haller 2004; Kilic, Haller & Neishtadt 2005).

In a second follow-up paper, we extend the present approach to unsteady flows
with a time-varying mean component (Surana & Haller 2006). If the time scale of the
mean component is sufficiently far from that of the oscillatory component, the flow
displays moving separation. Moving separation turns out to occur along finite-time
unstable manifolds; we locate such manifolds by extending the analysis of Haller
(2004) and Kilic et al. (2005) to three dimensions.
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Steady flows with moving no-slip boundaries cannot be treated by the methods
described here. Instead, on passing to a frame co-moving with the boundary, one
obtains an unsteady velocity field that can be analysed by the methods of Parts 2 and
3 of this study (Surana et al. 2006; Surana & Haller 2006). Under certain conditions,
however, the separation points or lines may lie off the moving boundary, and hence
are not amenable to our boundary-based invariant manifold approach. Such off-wall
separation is discussed by Sears & Tellionis (1975) and Elliott, Smith & Cowley (1983)
for the two-dimensional boundary-layer equation with an infinite moving boundary.

We benefited from useful discussions with Gustaav Jacobs and Tom Peacock. We are
also thankful for the suggestions of J. Z. Wu, and for the insightful comments of the
anonymous referees. This work was supported by AFOSR Grant F49620-03-1-0200
and NSF Grant DMS-04-04845.

Appendix A. Proof of separation-line criterion
We first identify S-type and R-type strong hyperbolicity by analysing the

linearization of the scaled flow (2.10) along skin-friction trajectories. We then use
invariant manifold theory to deduce the emergence of a robust separation or
reattachment surface from strongly hyperbolic trajectories.

A.1. Linearized scaled flow along a skin-friction trajectory

The linearized scaled flow (2.10) along a skin-friction trajectory x(s, x0) satisfies(
ξ ′

η′

)
=

(
∇x A(x(s, x0), 0) ∂z A(x(s, x0), 0)

0 C(x(s, x0), 0)

)(
ξ

η

)
. (A 1)

This linear system immediately yields the solution component

η(s) = η0 exp

(∫ s

0

C(x(r; x0), 0) dr

)
, (A 2)

which enables us to re-write the ξ -component of (A 1) as

ξ ′ = ∇x A(x(s; x0), 0)ξ + η0∂z A(x(s; x0), 0) exp

(∫ s

0

C(x(r; x0), 0) dr

)
, (A 3)

a two-dimensional inhomogeneous system of linear ODEs.
Observing that A(x(s; x0), 0) is a solution of the homogeneous part of (A 3), we

introduce the change of coordinates

ξ = T (s)ρ, T (s) =

[
A(x(s; x0), 0)

|A(x(s; x0), 0)| ,
A⊥(x(s; x0), 0)

|A⊥(x(s; x0), 0)|

]
,

A⊥(x(s; x0), 0) = JA(x(s; x0), J =

(
0 −1
1 0

)
.

This coordinate change transforms (A 3) to the form

ρ ′ = R(s)ρ + η0T T (s)∂z A(x(s; x0), 0) exp

(∫ s

0

C(x(r; x0), 0) dr

)
, (A 4)
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where, as found by Haller & Iacono (2003) in a similar calculation, we have

R(s) =

(
S||(s) a(s)

0 S⊥(s)

)
, a(s) =

A · ([∇x A]A⊥ − [∇x A⊥]A)

|A|2

∣∣∣∣∣
x=x(s,x0),z=0

, (A 5a)

S‖(s) =
A · ([∇x A]A)

|A|2

∣∣∣∣
x=x(s,x0),z=0

, S⊥(s) =
A⊥ · ([∇x A]A⊥)

|A⊥|2

∣∣∣∣
x=x(s,x0),z=0

. (A 5b)

Because R(s) is upper diagonal, we can solve (A 4) explicitly to obtain

ρ(s) = Ψ (s, 0)ρ0 + η0

∫ s

s0

Ψ (s, q)T T (q)∂z A(x(q; x0), 0) exp

(∫ q

0

C(x(r; x0), 0) dr

)
dq,

with the matrix

Ψ (s, s0) =

⎛
⎜⎜⎜⎝

exp

(∫ s

s0

S‖(r) dr

) ∫ s

s0

exp

(∫ s

q

S‖(r) dr +

∫ q

s0

S⊥(r) dr

)
a(q) dq

0 exp

(∫ s

0

S⊥(r) dr

)
⎞
⎟⎟⎟⎠ .

(A 6)

Thus, by (A 2) and (A 6), the solution of (A 1) takes the following form in the (ρ, η)
coordinates: (

ρ(s)
η(s)

)
= Φ(s)

(
ρ0

η0

)
, (A 7)

with

Φ(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

exp

(∫ s

0

S‖(r) dr

) ∫ s

0

exp

(∫ s

q

S‖(r) dr +

∫ q

0

S⊥(r) dr

)
a(q) dq d1(s)

0 exp

(∫ s

0

S⊥(r) dr

)
d2(s)

0 0 exp

(∫ s

0

C(x(r; x0), 0)

)
dr

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
d1(s)
d2(s)

)
=

∫ s

0

Ψ (s, q)T T (q)∂z A(x(q; x0), 0) exp

(∫ q

0

C(x(r; x0), 0) dr

)
dq. (A 8)

For later use, we compute d2(s) to find

d2(s) =

∫ s

0

exp

(∫ s

q

S⊥(r) dr +

∫ q

0

C(x(r; x0), 0

)
dr

∂2
z w · ω
2|ω|

∣∣∣∣
x=x(q,x0),z=0

dq. (A 9)

A.2. Strong S-hyperbolicity of skin-friction trajectories

Here we give a precise mathematical definition of strong S-hyperbolicity. Strong R-
hyperbolicity can be defined similarly by reversing the direction of the rescaled time s.

Consider a skin-friction line γ , and let x(s; x0) be the skin-friction trajectory starting
from x0 ∈ γ at s = 0. We say that γ is strongly S-hyperbolic with the stable subbundle
{η = 0} and with an unstable subbundle off the {η =0} plane, if the following hold:

(1) For any x0 and for any solution (ρ1(s), ρ2(s), 0) of (A 1) that is initially
orthogonal to γ , the solution component ρ2(s) decays to zero exponentially as s → ∞,
and grows exponentially as s → −∞.
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Figure 21. Properties of the subspace family Nu( · ).

(2) For any x0, there exists a unique one-dimensional subspace

Nu(x0) =
{
k ·

(
0, ρ0

2 , η
0
)∣∣k ∈ �, η0 > 0,

∣∣(0, ρ0
2 , η

0
)∣∣ = 1

}
,

such that for any solution (ρ(s), η(s)) with (ρ(0), η(0)) ∈ Nu(x0), the orthogonal
projection Πs [(ρ(s), η(s))] of (ρ(s), η(s)) onto the {ρ1 = 0} plane decays to zero
exponentially as s → −∞ and grows exponentially as s → +∞.

(3) The subspace family span{Nu( · ), (1, 0, 0)} is invariant under the linearized
scaled flow, i.e., Πs [Φ(s)Nu(x0)] ⊂ Nu (x (s; x0)) for any s ∈ �. Furthermore, the
angle θ (x (s; x0)) between Nu (x (s; x0)) and the normal of the {η = 0} plane is
uniformly bounded for any s (i.e. Nu (x (s; x0)) does not approach the z = 0 boundary
asymptotically).

We show the geometry of properties (2) and (3) in figure 21.

A.3. Growth and decay rates along skin-friction trajectories

We now compute all growth and decay rates needed to identify strong S-hyperbolicity.
First, we note that by (A 7) and (A 8), property (1) above is equivalent to

lim sup
s→∞

1

s

∫ s

0

S⊥(r) dr < 0, lim sup
s→−∞

1

s

∫ s

0

S⊥(r) dr < 0. (A 10)

To examine properties (2)–(3), consider a unit vector

r0(x0) =

⎛
⎜⎝

0

ρ0
2

η0

⎞
⎟⎠ =

⎛
⎜⎝

0

sin θ(x0)

cos θ(x0)

⎞
⎟⎠, cos θ(x0) > 0,

in the {ρ1 = 0} plane. Noting that

Φ(s)r0(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin θ(x0)

∫ s

0

exp

(∫ s

q

S‖(r) dr +

∫ q

0

S⊥(r) dr

)
a(q) dq + cos θ(x0)d1(s)

sin θ(x0) exp

(∫ s

0

S⊥(r) dr

)
+ cos θ(x0)d2(s)

cos θ(x0) exp

(∫ s

0

C(x(r; x0), 0)

)
dr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A 11)
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we express property (3) as[
sin θ(x0) exp

(∫ s

0

S⊥(r) dr

)
+ cos θ(x0)d2(s)

]

= tan θ (x(s; x0))

[
cos θ(x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)]
,

lim sup
s∈�

|tan θ (x(s; x0))| < ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 12)

The orthogonal projection of Φ(s)r0(x0) onto the {ρ1 = 0} has length√[
sin θ (x0) exp

(∫ s

0

S⊥(r) dr

)
+ cos θ (x0)d2(s)

]2

+

[
cos θ (x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)]2

=

∣∣∣∣
√

1 + tan2 θ (x(s; x0)) cos θ (x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)∣∣∣∣ . (A 13)

Based on (A 7), (A 8), (A 12) and (A 13), properties (2) and (3) can be expressed as

lim sup
s→−∞

1

s
log

[
cos θ(x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)]
> 0,

lim sup
s→−∞

1

s
log

[√
1 + tan2 θ (x(s; x0)) cos θ(x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)]
> 0

lim sup
s→∞

1

s
log

[
cos θ(x0) exp

(∫ s

0

C(x(r; x0), 0) dr

)]
> 0,

lim sup
s∈�

|tan θ (x(s; x0))| < ∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 14)

which is in turn equivalent to the set of conditions

lim sup
s→−∞

1

s

∫ s

0

C(x(r; x0), 0) dr > 0,

lim sup
s→∞

1

s

∫ s

0

C(x(r; x0), 0) dr > 0,

lim sup
x0∈γ

|tan θ (x0)| < ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 15)

A.4. Separation slope

We shall now argue that the third condition in (A 15) already follows from (A 10) and
from the remaining two conditions in (A 15). As a side result, we obtain an expression
for the angle between the separation surface and the local wall normal.

Recall that under conditions (A 15), the second component of Φ(s)r0(x0) decays
exponentially to zero as s → −∞:

lim sup
s→−∞

1

s
log

∣∣∣∣sin θ(x0) exp

(∫ s

0

S⊥(r) dr

)
+ cos θ(x0)d2(s)

∣∣∣∣ > 0. (A 16)

Equivalently, for all s < 0 with large enough |s|, we have

0 < K1 �
1

s
log

∣∣∣∣sin θ(x0) exp

(∫ s

0

S⊥(r) dr

)
+ cos θ(x0)d2(s)

∣∣∣∣ , (A 17)
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where the constant K1 > 0 can be selected arbitrarily small. For s < 0, we can rewrite
(A 17) as

expK1s

exp

(∫ s

0

S⊥(r) dr

) �

∣∣∣∣∣∣∣∣
sin θ(x0) + cos θ(x0)

d2(s)

exp

(∫ s

0

S⊥(r) dr

)
∣∣∣∣∣∣∣∣
.

Taking the limit s → −∞ on both sides of this last inequality, using the second
inequality in (A 10), and selecting

0 < K1 < − lim sup
s→−∞

1

s

∫ s

0

S⊥(r) dr,

we obtain tan θ(x0) = − lims → −∞
[
d2(s)/ exp

∫ s

0
S⊥(r) dr

]
, i.e.

tan θ(x0) =

∫ 0

−∞
exp

(∫ s

0

[C(x(r; x0), 0) − S⊥(r)] dr

)
∂2

z u · ω
2|ω|

∣∣∣∣
x=x(s,x0), z=0

ds. (A 18)

Now, by the boundedness of x(s, x0), the second factor in the integrand in (A 18) is
uniformly bounded. Also, by the second inequality in (A 10) and by the first inequality
in (A 15), the first factor in the integrand in (A 18) decays exponentially in q with an
exponent that is uniformly bounded in x0.

From the above, we conclude that (A 18) always gives a tan θ(x0) value that is
well-defined and uniformly bounded in x0 whenever the second inequality in (A 10)
and the first inequality in (A 15) hold. Selecting the θ(x0) defined by (A 18) and
proceeding backward through the steps leading from (A 16) to (A 18), we find that the
second component of Φ(s)r0(x0) always decays exponentially to zero if the second
inequality in (A 10) and the first inequality in (A 15) hold. Thus, the third condition
in (A 15) is superfluous.

A.5. Quantitative separation and reattachment criteria

The discussion above implies that the strong S-hyperbolicity conditions in (A 10) and
(A 15) can be summarized as

lim sup
s→+∞

1

s

∫ s

0

S⊥(r) dr < 0, lim sup
s→−∞

1

s

∫ s

0

S⊥(r) dr < 0,

lim sup
s→+∞

1

s

∫ s

0

C(x(r; x0), 0) dr > 0, lim sup
s→−∞

1

s

∫ s

0

C(x(r; x0), 0) dr > 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 19)

With the constants

n+ = lim sup
s→+∞

1

s

∫ s

0

S⊥(r) dr, n− = lim sup
s→−∞

1

s

∫ s

0

S⊥(r) dr,

w+ = lim sup
s→+∞

1

s

∫ s

0

C(x(r; x0), 0) dr, w− = lim sup
s→−∞

1

s

∫ s

0

C(x(r; x0), 0) dr,

⎫⎪⎪⎬
⎪⎪⎭
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the separation conditions (A 19) take the simple form

n± < 0, w± > 0. (A 20)

For reattachment lines, we obtain an analogous criterion by reversing time in all our
arguments; this leads to the reattachment conditions

n± > 0, w± < 0. (A 21)

A.6. Qualitative separation and reattachment criteria

A.6.1. Robust separation and reattachment lines

We recall that the α-limit set of a skin-friction trajectory x (s; x0) is the set of
points visited arbitrarily closely by x (s; x0) as s → −∞. The α-limit set is always
invariant, i.e. consists of a set of full trajectories. If γ is bounded, then its α-limit
set is guaranteed to be non-empty, closed and connected (see, e.g. Guckenheimer &
Holmes 1983).

We also recall that the ω-limit set of x (s; x0) is defined as the α-limit set of
x (−s; x0), i.e. the set of points visited arbitrarily closely by x (s; x0) as s → + ∞.The
properties of ω-limit sets are identical to those listed above for α-limit sets. By the
Poincaré–Bendixson theory, the α- and ω-limit set of a bounded planar trajectory is
either a fixed point or a set of fixed points connected by skin-friction trajectories or
a limit cycle (see, e.g. Guckenheimer & Holmes 1983).

As a consequence, the α-limit set for a strongly S-hyperbolic skin-friction trajectory
x (s; x0) cannot be a stable invariant set because x (s; x0) approaches the α-limit set
in backward time. Furthermore, the α-limit set cannot be an unstable node, unstable
spiral, or unstable limit cycle distinct from x (s; x0); in each such case, x (s; x0) would
attract nearby skin-friction trajectories as s → −∞.

Therefore, the only possible α-limit set for a bounded strongly S-hyperbolic skin-
friction trajectory x (s; x0) is a saddle-type skin-friction zero or an unstable limit cycle
coinciding with x (s; x0). Both the saddle and the limit cycle must be structurally stable,
i.e. robust under small perturbations to the flow (see property (iv) in our requirements
for separation in § 3). Saddles and limit cycles are known to be structurally stable if
they are non-degenerate, i.e. attract nearby skin-friction trajectories at an exponential
rate as s → −∞.

The ω-limit set of a bounded strongly S-hyperbolic skin-friction trajectory x (s; x0)
can only be a stable node, a stable spiral, an attracting limit cycle, or an attracting
curve of fixed points with skin-friction trajectories connecting them. For any other
ω-limit set, x (s; x0) would not attract all infinitesimally close trajectories of (2.10) in
the z = 0 plane.

The last two of the above ω-limit sets – sets of zeros and zeros connected by
trajectories – are structurally unstable, i.e. can be dramatically altered by arbitrary
small perturbations to the flow. For this reason, we have to exclude them as possible
ω-limit sets for a separation line by the robustness requirement (iv) of § 3.

The requirement of robustness also implies the following: if the ω-limit set of a skin-
friction trajectory x (s; x0) in a separation line is a stable node, then the node must
have unequal negative eigenvalues and x (s; x0) must be tangent to the eigenvector
corresponding to the larger eigenvalue. Figure 22 shows how equal eigenvalues and
tangency to the eigenvector with the smaller eigenvalue leads to a structurally unstable
separation line.
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γ γ

γ γ

Figure 22. The effect of small perturbations on skin-friction lines asymptotic to a degenerate
stable node (improper node). Also, the effect of small perturbations on a skin-friction line
tangent to the weaker eigenvector of a non-degenerate node (proper node).

The remaining two possible ω-limit sets – stable spirals and stable limit cycles – are
structurally stable, as long as they are non-degenerate, i.e. attract nearby skin-friction
trajectories at an exponential rate as s → ∞.

Based on the above discussion, the only possible separation lines are those listed in
(S1)–(S4) of § 6. Reversing the direction of time in our arguments, we obtain that the
only possible reattachment lines are those listed in (R1)–(R4) of § 6.

A.6.2. Separation and reattachment surfaces

Having identified the only possible candidates for separation and reattachment
lines, we now give additional conditions under which such candidates are actual
separation or reattachment lines, i.e. are contained in separation or reattachment
surfaces emanating from the wall.

Conditions on α-limit sets

Assume that the α-limit set of a strongly S-hyperbolic skin-friction trajectory
x(s; x0) is a non-degenerate saddle-type skin-friction zero p. Then p is a saddle-type
fixed point for the rescaled flow (2.10) with two eigenvectors in the z =0 plane. The
trajectory x(s; x0) is tangent to the eigenvector corresponding to a positive eigenvalue;
the other eigenvector of p – corresponding to a negative eigenvalue – is transverse to
γ in the z = 0 plane.

Because the trajectory x(s; x0) is strongly S-hyperbolic, we know that

w− = lim sup
s→−∞

1

s

∫ s

0

C(x(r; x0), 0) dr > 0 (A 22)

must hold by (A 20). Since x(s; x0) tends to p exponentially fast in s, we have

w− = sign C( p, 0) = sign ∂2
z w( p, 0),

which, by (A 22), implies

∂2
z w( p, 0) > 0. (A 23)

Assume now that the α-limit set of a strongly S-hyperbolic x(s; x0) is a non-
degenerate unstable limit cycle that coincides with x(s; x0). If T denotes the period
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of the limit cycle, then the strong S-hyperbolicity condition (A 22) implies

w− = lim sup
s→−∞

1

s

∫ s

0

C(x(r; x0), 0) dr

= lim sup
n→−∞

1

nT

[
n

∫ T

0

C(x(r; x0), 0) dr

]

=
1

2T

∫ T

0

∂2
z w(x(s; x0), 0) ds > 0,

or, equivalently, ∫
Γ

∂2
z w ds > 0. (A 24)

Conditions on ω-limit sets

Assume that the ω-limit set of a strongly S-hyperbolic skin-friction trajectory
x(s; x0) is a non-degenerate spiral-type or node-type skin-friction zero q. Then
repeating the argument leading to condition (A 23), we find that w+ > 0 implies

∂2
z w(q, 0) > 0.

Assume now that the ω-limit set of a strongly S-hyperbolic x(s; x0) is a non-
degenerate stable limit cycle Γ . Again, repeating the argument leading to (A 24), we
find that w+ > 0 implies ∫

Γ

∂2
z w ds > 0.

Existence of a separation surface

Assume that the α-limit set of a strongly S-hyperbolic skin-friction trajectory
x(s; x0) is a non-degenerate saddle-type skin-friction zero p. We have seen that p
must satisfy condition (A 23), which means that the linearized rescaled flow must have
a second positive eigenvalue with the corresponding eigenvector off the z =0 plane.

By the stable manifold theorem (see, e.g. Guckenheimer & Holmes 1983), the
scaled flow (2.10) has a unique continuously differentiable two-dimensional unstable
manifold Wu ( p), containing trajectories of (2.10) that are backward-asymptotic to p.
Wu ( p) is also known to be tangent to the plane Eu ( p) spanned by the eigenvectors
corresponding to the two positive eigenvalues of the saddle p, see figure 23. Now
x(s; x0) is backward-asymptotic to p, hence x(s; x0) is contained in Wu ( p). But
x(s; x0) is also contained in the invariant plane z = 0, thus Wu ( p) must intersect the
z = 0 plane all along x(s; x0).

Along the intersection, Wu ( p) remains transverse to the z = 0 plane. Indeed, the
linearized flow map of (A 8) is a diffeomorphism, and hence cannot map linearly
independent vectors into linearly dependent vectors along x(s; x0). Also, under the
action of the linearized scaled flow (A 1), off-wall vectors tangent to Wu ( p) along
x(s; x0) will converge to the off-plane unstable eigenvector of p, and hence remain
bounded away from the z = 0 plane. Thus, the angle between Wu ( p) and the wall
normal at x0 is precisely θ (x0), as computed in (A 18). We conclude that S =Wu ( p)
satisfies properties (i)–(iv) of a separation surface with slope (A 18).
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Eu( p)

W u( p)

p
x(s; x0)

Figure 23. The construction of the separation surface as the two-dimensional unstable
manifold of the saddle p.

Assume now that the α-limit set of a strongly S-hyperbolic skin-friction trajectory
x(s; x0) is a non-degenerate unstable limit cycle Γ that coincides with x(s; x0). Then
condition (A 24) and the formula for (A 8) imply that Φ (T ), the linearized period-T
map (Poincaré map) along Γ for the scaled flow, has an eigenvector off the z = 0
plane with eigenvalue

exp

(
1

2

∫
Γ

∂2
z w ds

)
> 1.

Since Γ is a non-degenerate stable limit cycle in the z = 0 plane, Φ (T ) must also have
an eigenvalue of modulus less than one with the corresponding eigenvector transverse
to Γ in the z = 0 plane.

The stable manifold theorem for maps (see, e.g. Guckenheimer & Holmes 1983)
then implies the existence of a unique and continuously differentiable one-dimensional
unstable manifold for Φ (T ), which means a two-dimensional unstable manifold
Wu (Γ ) for Γ . Again, only vectors tangent to Wu (Γ ) along Γ remain bounded away
from z = 0 plane in backward time under the linearized flow (A 1). Consequently, the
angle between Wu (Γ ) and the wall normal at x0 is precisely θ (x0), as computed in
(A 18). We conclude that the surface S =Wu (Γ ) satisfies all properties (i)–(iv) of a
separation surface with slope (A 18).

The separation criteria (S1)–(S4) of § 6 simply summarize the results of this
appendix. Reversing the direction of the scaled time s, we obtain the reattachment
criteria (R1)–(R4) of § 6.

A.7. Tangential separation is not robust

The existence of a tangential separation profile is equivalent to the unboundedness
of (10.8 a). Since the wall-pressure gradient is uniformly bounded in a regular steady
Navier–Stokes flow, the first expression in (10.8) can only be unbounded if the matrix

−2∇xτ ( p) + ∇x · τ ( p)I (A 25)

becomes singular. That is the case if and only if ∇x · τ ( p)/2 is a multiplicity-two
eigenvalue of the wall-shear Jacobian ∇xτ ( p).

Out of all possible wall-shear zeros that can generate separation, only
non-hyperbolic fixed points and improper stable nodes can have repeated
eigenvalues. Non-hyperbolic fixed points, however, will disappear under generic small
perturbations. Improper stable nodes do not disappear, but become proper nodes or
spirals under small perturbations. As a result, all robust separation profiles must be
transverse to the boundary.
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The existence of a tangential separation surface is equivalent to the unboundedness
of the improper integral in (10.8 b). Note, however, that the first factor in this improper
integral decays exponentially, and the second factor is uniformly bounded whenever
the separation line is bounded. Tangential separation, therefore, could only occur
if the separation line started from a non-hyperbolic fixed point or a non-hyperbolic
limit cycle of the wall-shear field. Again, such objects are not robust under
perturbations.

Appendix B. Non-Degeneracy of separation and reattachment lines
The qualitative conditions (S1)–(S4) and (R1)–(R4) determine four possible

separation and four possible reattachment patterns. To identify such patterns in
applications, we must also verify the inequalities (A 20) and (A 21), which represent
non-degeneracy conditions for the saddles, nodes, spirals, and limit cycles to which
the separation lines asymptote. For completeness, we now list the corresponding
non-degeneracy conditions for all cases.

We shall use the characteristic equation

λ2 − ∇x · τ (x̄)λ + det ∇xτ (x̄) = 0 (B 1)

associated with the skin-friction Jacobian ∇xτ (x̄). We shall also use skin-friction
trajectories x(s) that solve the ODE x ′ = τ (x)/ (ρν). For simplicity, we assume that
ρν =const; if that is not the case, τ should be replaced with τ/ (ρν) in all non-
degeneracy conditions listed below.

(S1) x(s) originates from a saddle p and ends in a stable spiral q.
(a) n+ < 0: q attracts nearby skin-friction trajectories at an asymptotic exponential
rate if the Jacobian ∇xτ ( p) has eigenvalues with negative real parts, i.e. (B 1) has
roots with Re λi < 0 for x̄ = q . That is precisely the case if

∇x · τ (q) < 0, [∇x · τ (q)]2 < 4 det ∇xτ (q). (B 2)

(b) w+ > 0: this condition simplifies to C (q, 0) > 0, which requires

∂2
z w (q, 0) > 0. (B 3)

(c) n− < 0: this condition holds if p is a non-degenerate saddle, i.e., by (B 1),

det ∇xτ ( p) < 0. (B 4)

(d) w− > 0: this condition simplifies to C ( p, 0) > 0, which requires

∂2
z w ( p, 0) > 0. (B 5)

(S2) x(s) originates from a saddle p and ends in a stable node q.

(a) n+ < 0: ∇xτ (q) must have unequal negative eigenvalues, i.e. by (B 1), we must
have

∇x · τ (q) < 0, [∇x · τ (q)]2 > 4 det ∇xτ (q). (B 6)

(b) w+ > 0: same as (B 3).
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(c) The eigenvector corresponding to the smaller eigenvalue of ∇xτ (q) is

e(q) = (−2∂yτx(q), 2∂xτy(q) − ∇x · τ (q) +
√

[∇x · τ (q)]2 − 4 det ∇xτ (q)).

As we discussed earlier (cf. figure 22), x(s) cannot be tangent to e(q), thus we
must have

e(q) × lim
s→∞

τ (x(s))

|τ (x(s))| �= 0. (B 7)

(d) n− < 0: same as (B 4).
(e) w− > 0: same as (B 5).

(S3) x(s) originates from a saddle p and spirals onto a stable limit cycle Γ .

(a) n+ < 0: the limit cycle must attract nearby skin-friction trajectories at an
exponential rate. That is the case if the average normal strain rate along Γ is
negative, i.e.

∫
Γ

S⊥(s) ds < 0. Using the definition of S⊥(s), we therefore obtain∫
Γ

ω · (∇x [τ/ (ρν)] ω)

|ω|2
ds < 0. (B 8)

(b) w+ > 0: the limit cycle should be of saddle-type, i.e. must repel nearby off-wall
trajectories of the scaled flow (2.10) at an exponential rate. That is the case if the
average of C (x, 0) > 0 along Γ is positive, i.e.∫

Γ

∂2
z w ds > 0. (B 9)

(c) n− < 0: same as (B 4).
(d) w− > 0: same as (B 5).

(S4) x(s) is a stable limit cycle Γ .
(a) n+ < 0: same a (B 8).
(b) w+ > 0: same as (B 9).
(c) n− < 0: holds whenever (B 8) is satisfied (n− = n+).
(d) w− > 0: holds whenever (B 9) is satisfied (w− = w+).

The corresponding non-degeneracy conditions for reattachment patterns are
obtained from identical arguments in backward time. We only list the results:

(R1) x(s) originates from an unstable spiral p and ends in a saddle q.

(a) n− > 0: equivalent to

∇x · τ (q) > 0, [∇x · τ (q)]2 < 4 det ∇xτ (q). (B 10)

(b) w− < 0: equivalent to

∂2
z w ( p, 0) < 0. (B 11)

(c) n+ > 0: equivalent to

det ∇xτ (q) < 0. (B 12)

(d) w+ < 0: equivalent to

∂2
z w (q, 0) < 0. (B 13)
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(R2) x(s) originates from an unstable node p and ends in a saddle q.

(a) n− > 0: equivalent to

∇x · τ (q) > 0, [∇x · τ (q)]2 > 4 det ∇xτ (q). (B 14)

(b) w− < 0: same as (B 11).
(c) With the vector

e( p) = (−2∂yτx( p) , 2∂xτy( p) − ∇x · τ ( p) −
√

[∇x · τ ( p)]2 − 4 det ∇xτ ( p)),

we must have

e( p) × lim
s→−∞

τ (x(s))

|τ (x(s))| �= 0. (B 15)

(d) n+ > 0: same as (B 12).
(e) w+ > 0 : same a (B 13).

(R3) x(s) spirals off an unstable limit cycle Γ and ends in a saddle q.

(a) n− > 0: equivalent to ∫
Γ

ω · (∇x [τ/ (ρν)] ω)

|ω|2
ds > 0. (B 16)

(b) w− < 0: equivalent to ∫
Γ

∂2
z w ds < 0. (B 17)

(c) n+ > 0: same as (B 12).
(d) w+ > 0 : same a (B 13).

(R4) x(s) is an unstable limit cycle Γ .

(a) n− > 0: same as (B 16).
(b) w− < 0: same as (B 17).
(c) n+ > 0: holds whenever (B 16) is satisfied.
(d) w+ > 0 : holds whenever (B 17) is satisfied.

Appendix C. Separation slope on curved boundaries
Let F: (x, z) �→ (x,z − f (x)) denote the map describing the coordinate change

(x, z) �→ (x,z̃). Vectors based at (x0, f (x0)) are then carried forward by the derivative
map

∇F0=

(
I 0

−∇xf (x0) 1

)
to their transformed versions based at (x0, 0). Specifically, vectors in the tangent space
T(x0,f (x0))S of the original separation surface S at (x0, f (x0)) are mapped by ∇F0

into vectors in the tangent space T(x0,0)S̃ of the transformed separation surface S̃ at
(x0, 0) (see figure 24).
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Figure 24. Local geometry near a point (x0, f (x0)) of the separation line γ on the curved
surface z = f (x).

If tan θ̃ (x0) is the separation slope computed from formula (7.1) in the (x̃, z)
coordinates, then the vectors

ξ̃ 1 =

(
τ (x0)

0

)
, ξ̃ 2 =

(
ω (x0) tan θ̃ (x0)

|ω (x0)|

)
,

are contained in the tangent space T(x0,0)S̃. Therefore, their preimages under ∇F0,

ξ 1 =

(
τ (x0)

∇xf (x0) · τ (x0)

)
, ξ 2 =

(
ω tan θ̃ (x0)

1 + tan θ̃ (x0) ∇xf (x0) · ω

)
,

are contained in the tangent space T(x0,f (x0))S.
The intersection of the normal plane N(x0,f (x0))γ of the separation line and the

tangent space T(x0,f (x0))S is a vector ρ(x0) that lies in the span of ξ 1 and ξ 2, and is
orthogonal to ξ 1. Such a vector is given by

ρ(x0) = − (ξ 1 · ξ 2) ξ 1 + ξ 2.

Then the tangent of the true separation angle θ (x0) enclosed by ρ(x0) and the local
normal

n (x0) =

(
−∇xf (x0)

1

)
to S is given by

tan θ (x0) =
sin θ (x0)

cos θ (x0)
=

[(n (x0) × ρ(x0)) · τ (x0)/ |τ (x0)|]/[|n (x0)| |ρ(x0)|]
n (x0) · ρ(x0)/[|n (x0)| |ρ(x0)|]

=
[n (x0) × ρ(x0)] · τ (x0)

|τ (x0)| [n (x0) · ρ(x0)]
.

Appendix D. Flow models
D.1. The Perry–Chong procedure

We seek the velocity field u(x) = (u1 (x) , u2 (x) , u3 (x)), with x ≡ (x1, x2,x3), x3 > 0,
as a Taylor expansion at the boundary point x =0:

ui = Ai +

3∑
j=1

Aijxj +

3∑
j,k=1

Aijkxjxk +

3∑
j,k,l=1

Aijklxjxkxl +

3∑
j,k,l,m=1

Aijklmxjxkxlxm + . . . ,

(D 1)



Exact theory of three-dimensional flow separation. Part 1 97

with dots referring to terms of higher order. Ai , Aij , Aijk , and Aijkl are symmetric
tensors in all their indices except for the first one. The total number of independent
coefficients is 105.

Perry & Chong (1986) find relations among Aij... by forcing (D 1) to satisfy the
continuity equation (2.3), the no-slip boundary conditions on the boundary x3 = 0,
and the vorticity transport equations up to cubic order in xi . For ρ = 1 kg m−1, this
procedure yields

A1233 = A2133, A1333 = −2A1113 − A1223 − A2123,

A2333 = −A2113 − A1123 − 2A2223, A11233 = A21133,

A11333 = −2A11113 − A11223 − A21123, A12233 = A21233

A12333 = −2A11123 − A12223 − A21223,

A11133 = −A223A13

24ν
− A23A123

12ν
− A13A113

24ν
− A21233 + A12233 + A13333

2
,

A22333 = −A21123 − 2A22223 − A11223, A21333 = −A21113 − 2A21223 − A11123,

A22233 = −A113A23

24ν
+

A13A213

12ν
+

A23A223

24ν
− A21133 + A11233 + A23333

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D 2)

The above relations – combined with the continuity equations and the no-slip
condition on the wall – reduce the total number of unknown coefficients to 29.
These remaining coefficients can be determined by prescribing local features of the
skin-friction field

τ1(x1, x2) = a1 + b1x1 + c1x2 + d1x
2
1 + e1x1x2 + f1x

2
2 + g1x

3
1 + h1x

2
1x2 + i1x1x

2
2 + j1x

3
2

τ2(x1, x2) = a2 + b2x1 + c2x2 + d2x
2
1 + e2x1x2 + f2x

2
2 + g2x

3
1 + h2x

2
1x2 + i2x1x

2
2 + j2x

3
2 .

Equating ∂x3
(u1, u2) |x3 = 0, with (τ1, τ2), we obtain

A13 = a1, A113 =
b1

2
, A123 =

c1

2
,

A1113 =
d1

3
, A1123 =

e1

6
, A1223 =

f1

3
,

A11113 =
g1

4
, A11123 =

h1

12
, A11223 =

i1

12
, A12223 =

j1

4
,

A23 = a2, A213 =
b2

2
, A223 =

c2

2
,

A2113 =
d2

3
, A2123 =

e2

6
, A2223 =

f2

3
,

A21113 =
g2

4
, A21123 =

h2

12
, A21223 =

i2

12
, A22223 =

j2

4
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D 3)

This leaves nine free coefficients: A133, A233, A2133 A1133, A2233, A13333, A21133, A21233

and A23333. By choosing these parameters appropriately, we can create various flow
patterns near the boundary.

D.2. Model with linear skin-friction field

Consider a linear skin-friction field

τ1(x1, x2) = a1 + b1x1 + c1x2,

τ2(x1, x2) = a2 + b2x1 + c2x2,
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which has a unique zero if b1c2 − b2c1 �= 0. By (D 2) and (D 3), we obtain the
corresponding velocity field

u1 = a1x3 + b1x1x3 + c1x2x3 + x2
3 [A133 + A1133x1 + A1233x2] ,

u2 = a2x3 + b2x1x3 + c2x2x3 + x2
3 [A233 + A1233x1 + A2233x2] ,

u3 = −b1 + c2

2
x2

3 − A1133 + A2233

3
x3

3 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D 4)

with nine free parameters. For simplicity, we take a1 = a2 = 0, which places the skin-
friction zero at the origin. In addition, we let A133 = α, A233 = β , A1133 = A2233 = δ and
A1233 = 0. The parameters α, β , and δ then determine the type and the direction of
the separation or reattachment at the point x1 = x2 = 0.

D.3. Model with unbounded separatrix in the skin-friction field

Consider the skin friction field

τ1(x1, x2) = ax1,

τ2(x1, x2) = −bx2 + cx2
1 .

For a, b > 0, this skin-friction field has a unique saddle-type zero at the origin. The
unstable manifold of the saddle is the x2-axis; the stable manifold of the saddle has
an unbounded parabola-type shape.

We set A133, A2133,A233, A2233, A13333, A21133, A21233 and A23333 equal to zero and
let A1133 = −d . Then (D 2)–(D 3) give the velocity field (12.3) with all the remaining
coefficients obtained from the equations (D 2)–(D 3).

D.4. Model with separation bubble

We now consider a quadratic skin-friction field

τ1(x1, x2) = (x1/a)2 + (x2/b)2 − 1,

τ2(x1, x2) = − (cx1 + d) x2,

which has a pair of zeros symmetric to the x1-axis, and another pair symmetric to
the x2-axis. The first pair of zeros are saddles, whereas the second pair are typically
spirals. Such a zero distribution is the typical on-wall signature of a separation bubble.

Using (D 2)–(D 3) and letting A133 = α, A233 = β , A1133 =A2233 = δ and A1233 = 0, we
obtain the corresponding velocity field (12.6).

D.5. Model with stable limit cycle in the skin-friction field

Consider the skin friction field

τ1(x1, x2) = µx1 + x2 − x3
1 − x1x

2
2 ,

τ2(x1, x2) = −x1 + µx2 − x2x
2
1 − x3

2 .

Passing to polar coordinates reveals that for µ > 0, this skin-friction field has an
attracting limit cycle at x2

1 + x2
2 = µ, which encircles an unstable spiral at the origin.

The limit cycle is created in a supercritical Hopf bifurcation as µ is varied from
negative to positive values. For simplicity, we choose all remaining free coefficients in
(D 2)–(D 3) to be zero, which yields the velocity field (12.8).

As we show in § 12.6, the above example exhibits open separation along the limit
cycle, with a separation surface that is orthogonal to the z = 0 plane. Exploiting the
cylindrical symmetry of the model, we can also find a higher-order approximation to
the separation surface as follows.
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We transform the velocity field (12.8) to cylindrical coordinates to obtain the
rescaled equations of motion

ṙ = µr − r3 + 8
3
z2, θ̇ = −1, ż = −µz + 2zr2 − 4

3
z3. (D 5)

Due to rotational symmetry in θ , the (r, z) subsystem

ṙ = µr − r3 + 8
3
z2, ż = −µz + 2zr2 − 4

3
z3, (D 6)

decouples from the full scaled flow and can be analysed separately.
The limit cycle Γ appears in (D 6) as a saddle-type fixed point (r̄ , z̄) = (

√
µ, 0). The

separation surface emanating from Γ is then the unstable manifold of (r̄ , z̄), which
we seek in the form

r = f (z) =
√

µ + az2 + O(z3). (D 7)

Using the invariance of the unstable manifold, we differentiate both sides of (D 7) in
time and use (D 6) to obtain

f (z) =
√

µ +
8

3(7 − 3µ)
z2,

which gives

x2 + y2 −
16

√
µ

3(7 − 3µ)
z2 = µ + O(z4), (D 8)

a quadratic approximation for the separation surface.

D.6. Model with homoclinic bifurcation in the skin-friction field

The quadratic skin-friction field

τ1(x1, x2) = x2,

τ2(x1, x2) = x1 + µx2 − x2
1 − x1x2,

is one of the simplest possible vector fields that admit a homoclinic bifurcation as
the parameter µ is varied through zero (see Khalil 2002). The homoclinic bifurcation
involves the creation and destruction of an orbit that connects a saddle point at
(x1, x2) = (0, 0) to itself.

The τ -field also admits another fixed point (x1, x2) = (0, 1), which undergoes a
supercritical Hopf bifurcation as µ is varied through zero. For a range of parameters,
the attracting limit cycle created by the Hopf bifurcation also attracts the unstable
manifold of the saddle point, creating a connection between the saddle and the limit
cycle. For simplicity, we again choose all remaining free coefficients in (D 2)–(D 3) to
be zero, which yields the velocity field (12.10).

Appendix E. Vorticity-based separation theory
Here we summarize the vorticity-based incompressible separation theory of Wu

et al. (2000). We express their results in our notation for comparison with our theory.
Let x⊥(s; x0) be a trajectory of the wall-vorticity field ω(x). Let e(s) and n(s) be

the unit tangent and the unit normal to x⊥(s) so that

e(s) =
A⊥(x⊥(s; x0), 0)

|A⊥(x⊥(s; x0), 0)|
, n(s) =

A(x⊥(s; x0), 0)

|A(x⊥(s; x0), 0)| .

The curvature κ2(s) of x⊥(s; x0) satisfies

e′ = κ2n, (E 1)
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thus,

κ2(s) =

(
d

ds

A⊥
√

A · A

)
· n =

(
(∇x A⊥)A⊥

√
A · A

− d/ds A · A
√

A · A
3

A⊥

)
· A

|A(x⊥(s), 0)|

=
A · ([∇x A⊥]A⊥)

√
A · A

3
=

A · ([∇x JA] A⊥)
√

A · A
3

= − A⊥ · ([∇x A] A⊥)

|A⊥|3
.

We conclude that at any point x0,

κ2 = −S⊥/ |A| . (E 2)

Furthermore, along a skin-friction trajectory x(s; x0), we have

η1(s) =
d

ds
log |A (x(s; x0), 0)| =

1

|A|
2d/ds A · A

2
√

A · A

=
A · ([∇x A] A)

|A|3
,

thus at any point x0, we have

η1 = S||/ |A| . (E 3)

Wu et al. (2000) require that in a separation zone, skin-friction trajectories should
converge and the flow should develop an upwelling. They find that these two
requirements are equivalent to

κ2 > 0, κ2 (κ2 − η1) > 0,

which, by (E 2) and (E 3), can be rewritten as

S⊥ < 0, S⊥ + S|| < 0. (E 4)

For reattachment lines, the analogous criteria are

S⊥ > 0, S⊥ + S|| > 0.

Wu et al. (2000) also propose that in addition to satisfying (E 2)–(E 3), a separation
line must also be a local maximizing curve (ridge) for the scalar field

ϕ = κ2(κ2 − η1) = S⊥(S⊥ + S||)/ |A|2 = S⊥(S⊥ + S||)/ |ω|2 ,

which is the product of the τ -line curvature and the strength of the wall-normal
upwelling normalized by the wall-vorticity. Thus, Wu et al. propose that the separation
line must be a portion of a skin-friction line satisfying

∇xϕ · ω = 0, ωT
[
∇2

xϕ
]
ω < 0. (E 5)

Wu et al. also state that (E 4)–(E 5) may be satisfied over an entire skin-friction line
(closed separation) or on part of a skin-friction trajectory (open separation).

Note, however, that unless the ϕ-field is degenerate, (E 5) defines ridges that are
not skin-friction lines. Indeed, along any skin-friction trajectory x(s; x0),

d

ds
{∇xϕ (x(s; x0)) · ω (x(s; x0))} =

1

ρν

{
ωT

[
∇2

xϕ
]
+ (∇xϕ)T [∇xω]

}
· τ |x(s;x0) �= 0,
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unless τ (x(s; x0)) ≡ 0 or τ (x) is linear, in which case ∇2
xϕ ≡ 0 and ∇xω ≡ 0. Thus,

away from skin-friction zeros, the trajectories of a non-degenerate skin-friction field
do not coincide with the ridges of ϕ.

We conclude that (E 5) fails to capture either open or closed separation lines unless
the τ -field is degenerate. Indeed, the vorticity-based separation theory fails to identify
the correct separation line in all of our examples of § 12, even though it provides
a close approximation near skin-friction zeros. Citing numerical difficulties, Wu et
al. (2000) were unable to validate (E 5) in their example involving a flow past a
prolate spheroid. Nevertheless, their example appears to admit a large near-linear
domain for the τ -field, thus an exact numerical evaluation of (E 5) may give a good
approximation for the separation line.

Finally, Wu et al. (2000) propose that for incompressible Navier–Stokes flows, the
separation angle defined in figure 8 satisfies

tan θω (x0) =
∂2p

|τ | (3κ2 − η1)

∣∣∣∣
x=x0, z=0

, (E 6)

where ∂2 denotes the derivative in the direction of ω and p denotes the pressure.
Noting that

∂2p =
(∇xp, ω)

|ω| ,

and using (E 2)–(E 3), we rewrite (E 6) to obtain

tan θω (x0) =
∇xp · ω

|τ | (−3S⊥ − S||)

∣∣∣∣
x=x0,z=0

= − 1

ρν

∇xp · ω
|ω| (3S⊥ + S||)

∣∣∣∣
x=x0,z=0

. (E 7)

To see the connection between this vorticity-based slope-approximation and the
true separation slope tan θ (x0) obtained in (10.8), assume that x(s, x0) ≡ x0 holds,
i.e. x0 is a zero of the skin-friction field. Then the exact slope formula (10.8) can be
evaluated as

tan θ (x0) =
1

νρ

∫ 0

−∞
exp

(
−1

2
[3S⊥(x0) + S||(x0)]s

)
∇xp(x0, 0) · ω (x0)

2|ω (x0) | ds

= − 1

ρν

∇xp · ω
|ω| (3S⊥ + S||)

∣∣∣∣
x=x0,z=0

= tan θω (x0) . (E 8)

Thus, tan θ (x0) and tan θω (x0) are equal at skin-friction zeros, but differ at other
points in non-degenerate fluid flows. Indeed, (10.8) and (E 7) only agree throughout
γ if the skin-friction field is linear and ∇xp · ω/|ω| in constant along γ .
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